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ABSTRACT 

A quantitative, contact-free method for extracting minority carrier diffusion 

length is used to measure the relatively small variations in diffusion length associated 

with dislocation bands in mismatched epitaxy in the p-type region of a two dimensional 

heterostructure of a triple junction (InGaP/GaAs/Ge) solar cell sample.  These 

measurements are taken using the line scan mode of a Scanning Electron Microscope 

coupled with an optical microscope. 

This technique allowed the variations in diffusion length in the 49 51In Ga P  sample 

to be measured to within 0.1 microns.  Also, the variations were not random but varied 

spatially with respect to the light and dark cathodoluminescence bands on the sample.  

However, there is an inverse relationship between the maximum luminescent intensity 

and the diffusion length.  Since the radiative lifetime and non-radiative lifetime are on the 

same order of magnitude, a relationship between the maximum luminescent intensity and 

minority carrier diffusion length to the lifetimes were derived.  With the radiative lifetime 

inversely dependent on the free hole concentration, a simulation was conducted to 

qualitatively reproduce the relationship between luminescent intensity and minority 

carrier diffusion length. 

The model simulated the non-radiative lifetime and free hole concentration 

decreasing across dislocation bands.  This described the behavior of the non-radiative 

lifetime due to defect states associated with the dislocations.  It also qualitatively 

illustrated the increase in radiative lifetime if the free hole concentration is reduced due to 

variations in Fermi level.  Therefore, the simulation qualitatively described the spatial 

behavior of the diffusion length due to the presence of dislocations and reproduced the 

experimental anti-correlation between the diffusion length and maximum luminescent 

intensity.  Areas of further research are offered to expand this work to other triple 

junction solar cell materials to include effects of lattice mismatched materials, varying 

mole concentrations, atomic ordering, and doping concentration. 
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I. INTRODUCTION 

A. MAPPING DIFFUSION LENGTH VARIATION IN SOLAR CELL 
MATERIALS 

With the rising concerns for global warming, coupled with high oil prices and 

increasing government support, the need for low cost, high efficiency renewable energy 

sources is at an all time high.  The energy generated from natural resources such as 

sunlight, wind, rain, tides, and geothermal heat are some examples of renewable energy 

sources.  In 2006, about 18 percent of global final energy consumption came from 

renewables with approximately one percent from photovoltaic technology [1], [2].  

Photovoltaic devices employ the use of solar cells to collect sunlight and then convert the 

light into electricity.  The fact that only 0.6 percent of renewable energy was generated 

from solar cells is important because solar radiation along with several other secondary 

solar resources account for 99.97 percent of the available energy on Earth [3], [4].  The 

total solar energy absorbed by Earth’s atmosphere, oceans, and land masses is 

approximately 3850 zettajoules (ZJ) per year [5].  In 2002, this was more energy in one 

hour than the world used in one year [6].  The amount of solar energy reaching the 

surface of the planet is so vast that in one year it is about twice as much as will ever be 

obtained from all the Earth’s non-renewable resources of coal, oil, natural gas, and mined 

uranium combined.  Unfortunately, to harness this vast well of energy, improvements to 

current space and terrestrial solar cell technology must be made.   

Terrestrial solar cell technology is used in a variety of applications such as 

architecture, urban planning, agriculture, horticulture, heating, and cooling.  Despite all 

of these uses, there are currently three major limitations associated with terrestrial solar 

cells; low power conversion efficiency, high cost per watt-hour and the area required for 

the cells and associated equipment.  Current photovoltaic ground modules in use have 

only achieved 10 percent efficiency, though higher efficiencies up to 16.5 percent have 

been produced at the national Renewable Energy Laboratory and Boeing has reported 

achieving 22 percent efficiency, but none of these have been implemented commercially 
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[7].  In addition an installed system costs about 4-5 $/watt.  This is much more expensive 

than today’s rates for conventional power sources, which are on average 0.12 $/watt [2].  

Finally, due to the relatively low efficiency of the solar cells, large areas of land, tens of 

thousands of square miles, are required to build enough photovoltaic modules to collect 

enough light, convert and store the needed amount of power, and distribute the power to 

the required number of homes, businesses, and other customers.  Therefore, according to 

the Department of Energy and the Energy Foundation, in order for terrestrial solar cells to 

be a competitive technology for energy production, the photovoltaic modules must 

convert electricity with at least 14 percent efficiency, and systems would have to be 

installed at $1.20 per watt of capacity.  Progress is clearly needed on the ground. 

Space solar cell technology has long been a focus of cutting-edge, high efficiency 

devices.  Currently, there are three major issues regarding space solar cells; onboard 

power requirements, mass, and cost.  As the operational demand increases for satellites to 

become more versatile and multi-mission, more equipment is being designed into the 

standard buses.  In addition, customers are demanding satellite response times to decrease 

as well.  In order to meet the myriad number of required missions in the allotted time 

more complex imagers have been designed, higher frequency communication antennas 

are being installed, more powerful computers are interconnected, and faster attitude 

control equipment has been added.  All of this equipment can require hundreds of watts 

of power at once.  Storage units such as batteries can not always provide this power 

before they run out of charge.  In addition, storage units can be massive and some contain 

radioactive material required for long term power generation.  Therefore, thin layered, 

high efficiency solar cells appear to be the most promising option for space applications.  

The current space qualified solar cells have a reported energy conversion efficiency of 

28.5 percent, however, experimentally efficiencies have been reported as high as 40 

percent for solar cells using a concentrator.  The next generation of solar cells with 

proven efficiencies above 30 percent is currently too expensive for use on satellites which 

are already experiencing cost overruns.  Unfortunately, the concentrator adds additional 

cost and mass making it a less desirable option for satellite designs.  Solar arrays can be 

directed towards the sun on a continuous basis, but controllers to do so add mass, 
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complexity, and cost.  A solution to these complex problems is the development of a thin 

film, high efficiency solar cell that can be used either terrestrially or in space.  The key to 

developing such a solar cell motivates further research and development.  One aspect of 

that research involves study of the properties of the materials used and how they interact 

with one another. 

Currently there are many different solar cell, or photovoltaic device, 

configurations with a variety of materials used for various applications.  The most 

efficient configuration is the p-n multi-junction photovoltaic cell.  Semiconductors that 

have an excess of free electrons are referred to as n-type materials, and semiconductors 

that have an excess of holes are referred to as p-type materials.  In n-type materials, holes 

are referred to as the minority carriers while in p-types, the minority carriers are 

electrons.  One of the key physical properties of such materials is the diffusion length.  

When n-doped and p-doped pieces of semiconductor are placed together to form a p-n 

junction, electrons diffuse into the p-side and holes diffuse into the n-side.  Electrons 

exiting an n-region near the junction leave behind exposed positively charged donor ions.  

Similarly, holes exiting a p-region near the junction expose negatively charged acceptor 

ions.  Within the p-type region, the minority carriers (electrons) will recombine with 

holes.  An identical process occurs for the injected holes within an n-type region.  After 

all of the excess electrons and holes have recombined in an area, there are no longer any 

mobile carriers and it is referred to as a depletion region [8], [9], [10].  In addition, 

charged ions are left behind which create an electric field.  Electrons, which are the 

minority charge carriers in a p-type region, must have a large enough diffusion length to 

diffuse into a depletion region where they are forced into the n-type region by the electric 

field [10].  In the collection of photogenerated charges, a photon will be absorbed at the 

junction if its energy is equal to or greater than the material’s energy band gap.  Electron-

hole pairs are created and diffused from regions of high electron concentration to regions 

of low concentration.  The transport and collection of the charge carriers determine the 

overall performance of the solar cell.  If the diffusion length is not of sufficient size then 

the electron may be lost to recombination and overall performance will decrease. 
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These p-n junctions are used in series in the production of multi-junction 

photovoltaic cells to gain efficiency.  They consist of multiple thin films produced using 

molecular beam epitaxy or metalorganic vapor phase epitaxy.  Each type of 

semiconductor material used in a multi-junction solar cell has its own characteristic band 

gap energy.  This will allow the solar cell to absorb light more efficiently over a spectrum 

of wavelengths, so that the semiconductor layers are able to absorb a large fraction of the 

solar energy to generate electricity.  The ability to optimize the respective band gaps of 

the various junctions is hampered by the requirement that each layer must be lattice 

matched to all other layers [11]. 

Because of lattice matching another important parameter in the production of 

semiconductors is the lattice constant of the crystal structures.  The lattice constant is the 

size of a unit cell in a crystalline material.  In epitaxial growth, which is the method of 

depositing a monocrystalline film on a monocrystalline substrate, the variation in lattice 

constant is a measure of the structural compatibility between different materials.  Lattice 

constant matching is important for growth of thin layers of materials on other materials.  

When the constants differ, strains are introduced into the layer, which prevent defect-free 

epitaxial growth of thicker layers [9], [10], [12].  Matching lattice structures between two 

different semiconductor materials allows formation of a region of band gap variation in 

the device without introducing a change in crystal structure and thereby minimizes film 

stress.  Unfortunately, the lattice match is often not perfect and the film stress cannot be 

totally eliminated so dislocations, or crystallographic defects, are formed within the 

crystal structure at the boundaries of each junction. 

Dislocations are of particular interest because of their degrading effect on the 

carrier lifetime and related luminescence of the semiconductor material.  Dislocations are 

always present in multi-junction cells due to the small variations in lattice constants that 

despite all best efforts remain slightly mismatched.  These in turn influence the radiative 

and non-radiative minority carrier lifetimes.  It has been shown that the luminescence 

from the material can be used to determine diffusion lengths of minority charge carriers, 

which in turn is related to the effective minority carrier lifetime.  Investigating the 

relationship between the magnitudes of the luminescent intensity at the dislocations, the 
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associated diffusion length, and the mechanisms that may be underlying this relationship 

are key to further understanding the physics of multi-layer semiconductor systems and 

optimizing performance. 

B. PURPOSE OF THESIS 

The goal of this thesis is to develop the ability to measure the relatively small (1-7 

percent) variations in diffusion length associated with dislocation bands in mismatched 

epitaxy, and provided the variations are measureable, to determine the relationship 

between variations in diffusion length and luminescent intensity.  A technique was 

developed to extract the minority charge carrier diffusion lengths from a one dimensional 

analysis using position versus intensity and will be applied to determine the diffusion 

length of minority charge carriers in the p-type region of a 2D heterostructure of a triple 

junction (InGaP/GaAs/Ge) solar cell sample.  The intensity variation of the multiple 

dislocation bands within the InGaP sample were measured using the line scan mode of 

the Scanning Electron Microscope (SEM)  and a charge coupled device (CCD) camera in 

the Physics department at the Naval Postgraduate School (NPS). 

C. MILITARY RELEVANCE 

The military’s reliance on space assets and the need for operational responsive 

space has caused an increasing demand in finding more efficient, cost effective power 

source technologies to employ on its satellites.  The request from military commanders to 

have more information in a shorter period of time has increased the government’s 

willingness to invest money into developing smaller, more diverse satellites.  This means 

that the satellites will have more functionality; but must be small and compact in order to 

reduce weight and remain inexpensive.  Increased functionality unfortunately means that 

more equipment must be included into the standard bus.  The additional equipment means 

that the power requirements must increase.  The current sources of power generation, 

batteries, fuel cells, and radioisotope thermal generators, are complex, costly, and not 

very reliable over long periods of time.  Recently developed high efficiency solar cells 

require three or more junctions and additional concentrator mechanisms, which add mass 
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and complexity to the system.  Such metamorphic solar cells are costly to produce and 

are unacceptable for satellite applications.  In addition to space requirements the high cost 

of energy and concerns for the terrestrial environment have forced the military and 

industry to increase its search for clean, cheap alternative forms of energy.  While the 

metamorphic solar cell mentioned previously is a promising solution, it is not currently 

economical to produce.  One key to developing a solar cell material that is cost effective 

and provides more efficient energy conversion is by understanding the internal 

mechanisms that affect charge transport at the various defect sites within the crystalline 

structure.  This understanding could help in developing new crystal growth techniques 

that will further minimize the effects due to the difference in lattice constants between the 

heterostructures and substrates.  More efficient charge transport results in greater power 

generation, reducing the number of cells per panel, thereby reducing weight and volume 

requirements while improving cost effectiveness. 

D. THESIS OVERVIEW 

Chapter I provides an introduction to the thesis and explains the importance of a 

material’s diffusion length in charge transport.  It also describes the lattice constant 

associated with a particular solar cell crystal lattice structure and how dislocations are 

formed due to lattice mismatching.  Chapter I continues to introduce how the dislocations 

affect the photogeneration intensity and the minority carrier lifetime.  The purpose of the 

thesis and a discussion of the military relevance are also presented.  A review of solar cell 

technology, with emphasis on triple junction cells and an explanation of dislocations and 

lattice mismatch is given in Chapter II.  Additionally, charge carriers in semiconductors, 

luminescence in semiconductors, and diffusion, mobility, and lifetime of charge carriers 

are reviewed. 

Chapter III introduces the experimental approach and apparatus used for one 

dimensional transport imaging and describes the equipment used.  The experimental 

methodologies to extract diffusion length are also presented.  Chapter IV reviews the 

slope analysis estimation technique for the diffusion length and details initial 

observations from the graphs of luminescence variation and diffusion length extracted 
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from the line scan data.  It describes the correlation between the luminescence variation 

and diffusion length associated with dislocation bands.  This is followed by a derivation 

and explanation of the observed results.  Finally, Chapter V summarizes the results and 

suggests further areas of research. 
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II. ONE DIMENSIONAL TRANSPORT IMAGING THEORY AND 
MODELING 

A. TRIPLE JUNCTION SOLAR CELLS 

The transport imaging technique applied in this thesis experimentally allows the 

extraction of the diffusion lengths of minority charge carriers in luminescent 

semiconductor materials.  The focus of this work is on the p-type InGaP layers of a triple 

junction solar cell sample of InGaP/GaAs/Ge.  In a single band gap solar cell, efficiency 

is limited by an inability to convert the broad range of photon energy from in the solar 

spectrum.  Photons with energy above or below the band gap energy of a cell material are 

lost; either passing through the cell or generating heat within the material.  Only the 

energy necessary to generate the hole-electron pair is utilized, and the remaining energy 

is lost, thus reducing the efficiency [13]. 

The goal of a multi-junction solar cell is to take advantage of the different 

characteristic band gap energies of semiconductor alloys in order to use more of the solar 

spectrum.  By using different group III-V semiconductor alloys, the band gap of each 

layer may be tuned to optimally absorb a specific range of the solar electromagnetic 

spectrum [13].  The material with the highest band gap will be on top and absorb the 

photons with the highest energy.  The photons that have energy less than the band gap 

energy of the first layer will pass through to the next layers and be absorbed there.  Figure 

1 shows the absorption efficiency of each layer of the multi-junction cell, and the overall 

absorption efficiency of the solar cell as a function of solar spectrum wavelength. 
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Figure 1.   Triple-Junction Solar Cell Absorption Efficiency [From: 15]. 

 

The Air Mass Zero (AMO) solar constant is the typical absorption efficiency that is 

common in space.  It can be seen in Figure 1 that the solar spectrum is more efficiently 

used by the triple junction cell vice a solar cell that is only single or dual junction [14]. 
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Figure 2 shows a typical high efficiency triple-junction solar cell currently in use. 

n-type

p-type

p++-type

n++-type

Top Cell

Bottom Cell

Tunnel Junction

n+-type (window)

p+-type BSF

n-type

p-type

p++-type

n++-type

n+-type (window)

p+-type BSF

n-type

p-type

n+-type (window)

Tunnel Junction

Middle Cell

n+-typeARC ARC

+

-

VOC

n-type

p-type

p++-type

n++-type

Top Cell

Bottom Cell

Tunnel Junction

n+-type (window)

p+-type BSF

n-type

p-type

p++-type

n++-type

n+-type (window)

p+-type BSF

n-type

p-type

n+-type (window)

Tunnel Junction

Middle Cell

n+-typeARC ARC

+

-

VOC

 
Figure 2.   Typical Layers of a Triple-Junction Solar Cell [From: 14]. 

 

Several improvements have been made over time with additional layers added to the cells 

to increase efficiency.  The tunnel junctions are heavily doped layers that set up a 

tunneling field that allows for charge to flow more effectively between the layers.  The 

Back Surface Field (BSF) creates a more heavily doped p-type region that in turn creates 

another electric field that will increase the movement of minority carriers toward the 

depletion region.  Window layers have also been added to create a gradient that smoothes 

out the lattice mismatch between layers [15].  The window layer reduces surface 

recombination, while being thin enough to allow the photons to pass through to the next 

layer without being absorbed.  Even with these improvements, the ability to optimize the 

respective band gaps of the various junctions is hampered by the requirement that each 

layer must be lattice matched to all other layers. 
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B. LATTICE MISMATCH AND DISLOCATIONS 

As mentioned in the introduction of the thesis, matching of lattice structures 

between two different semiconductor materials allows the incorporation of band gap 

variation in the material without introducing a change in the crystal structure [12].  

Because solar cells are made of multiple binary and ternary alloys, each with its own 

crystal structure and lattice constant, the lattice spacing will be different between the 

crystals.  When layers which have different lattice constants are grown epitaxially a 

lattice mismatch is created.  The lattice mismatch causes defects referred to as line 

defects or dislocations. 

There are two types of dislocations: the edge and screw types.  Edge dislocations, 

illustrated in Figure 3, are defects where an extra half-plane of atoms are introduced mid-

way through the crystal, distorting nearby planes of atoms.  This distortion in bonding 

can occur periodically due to the stress associated with lattice mismatch. 

 

 
Figure 3.   Schematic Diagram Showing an Edge Dislocation [From: 16]. 
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When enough force is applied from one side of the crystal structure, this extra plane 

passes through planes of atoms breaking and joining bonds with them until it reaches a 

grain boundary [16], [17], [18].  The screw dislocation may be considered as being 

produced by cutting the crystal partway through and pushing the upper part one lattice 

spacing over as shown in Figure 4. 

 
Figure 4.   Schematic Diagram Showing a Screw Dislocation [From: 16]. 

 

Line defects in devices are undesirable because they act as precipitation sites for metallic 

impurities and also serve as potential recombination sites which decrease the efficiency 

of charge collection and degrade device performance [9]. 

For heteroepitaxy, which is how triple junction solar cells are grown, the epitaxial 

layers and the substrate are three different semiconductors, and the epitaxial layers must 

be grown in such a way that an idealized interface must be continuous without 

interruption.  Therefore, the adjacent semiconductors must either have the same lattice 

spacing or be able to deform to adopt a common spacing.  These two cases are referred to 

as lattice-matched epitaxy and strained-layer epitaxy [9].  An example of lattice matched 

epitaxy is shown in Figure 5 where the substrate and the epitaxial layer have the same 

lattice constant.  In the InGaP/GaAs/Ge triple junction solar cell, InGaP and Gallium 

Arsenide (GaAs) have a zinc blend crystal structure.  Germanium (Ge) has a diamond 

crystal lattice structure.  Table 1 shows the lattice constant of all three semiconductor 

materials and the percent variations between them. 
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Figure 5.   Schematic illustration of a lattice-matched heteroepitaxial structure. 

 
 Material Lattice Constant 

(Angstroms) 
Percent Variation 

(%) 
In49Ga51P 5.653  .0044 

GaAs 5.65325  .084 
Ge 5.658 -  

Table 1.   Lattice constant and percent variation of semiconductor materials in the 
InGaP/GaAs/Ge Triple Junction Solar Cell. 

 

The lattice constants are almost identical but still differ by approximately .0044 percent 

for InGaP and GaAs and approximately .084 percent for GaAs and Ge.  Therefore, there 

are slight lattice-mismatches between the epitaxial layers, InGaP and GaAs, and the Ge 

substrate.  Since the epitaxial layers have a lattice constant that is smaller than the lattice 

constant of the substrate, the epitaxial layer will be dilated in the plane of growth and 

compressed in a direction perpendicular to the interface. 
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In the strained-layer epitaxy, as the strained-layer thickness increases, the total 

number of atoms under strain or the distorted atomic bonds grows, and at some point 

misfit dislocations are nucleated to relieve the homogeneous strain energy.  Figure 6 

shows the case in which there are edge dislocations at the interface [9]. 

 

Figure 6.   Schematic illustration of a lattice-mismatched heteroepitaxial structure. 

 

The inherent properties associated with the dislocations degrade the electrical and 

optical properties of the material.  They can result in reduced mobility of minority charge 

carriers which will affect the diffusion length and lead to reduced power generation.  The 

dislocations also affect the recombination luminescence by reducing the fraction of 

carriers that lead to band to band emission for a given generation rate.  Figure 7 shows an 

image of light emission from an area of the InGaP material scanned with an electron 

beam. 
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Figure 7.   Image of InGaP Luminescence Showing Light/Dark Dislocation Lines (400 

mμ  x 337 mμ ). 

 

The vertical dark bands in the image are caused by the dislocation pattern.  There are 

various mechanisms that maybe responsible for the decrease in intensity within these 

dark bands.  However, the accepted theory is that the dislocations reduce the minority 

carrier lifetime [19], [20], [21].  Since lifetime affects the diffusion length 

diff
kTL
e

μ τ⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
 one should predict a corresponding periodic variation of minority 

carrier diffusion length. 



 17

C. TRANSPORT MODELING AND ASSUMPTIONS 

Transport imaging utilizes the combination of a SEM for high resolution charge 

generation and a Silicon CCD in conjunction with an optical microscope (OM) for the 

recording of the spatially resolved luminescence.  Upon exposure to the electron beam, a 

steady state spatial distribution of luminescence associated with charge recombination is 

created which can then be recorded by the CCD camera.  The CCD images can be 

analyzed in order to provide quantitative measurements of local minority carrier 

diffusion.  To extract the minority carrier diffusion lengths, there are a few assumptions 

that must be made.  It has been experimentally established that the SEM beam’s intensity 

follows a Gaussian distribution to first order [14].  In previous experiments it has been 

determined that the low injection limit, which means the minority carriers are 

recombining into a much larger and effectively constant number of majority carriers, is at 
91 10  Ampsx −�  of 30 keV electron beam current for studies of InGaP.  Since the low 

injection limit of the material is dependent on doping, it is important to ensure that this 

assumption is still valid for this material. 

The number of holes and electrons per unit volume for this sample of p-type 

InGaP is 17 31.10 10 cmx −=  and 11 32.11 10 cm− −= �  respectively [14], [22], [23].   and p nΔ Δ  

would then be the number of holes and electrons per unit volume generated in steady 

state by the electron beam incident on the material.  In order for the low injection limit to 

hold true for the modeling, pΔ << p  and nΔ >> n .  The maximum electron-hole pair 

generation rate, neglecting electron beam energy loss due to backscattering can be 

calculated by b

i

EG E= , where bE  is the incident beam energy and iE  is the ionization 

energy of the electron-hole pair in InGaP.  For electron beam energies in the 5-35 keV 

working range of the SEM, iE  is independent of incident electron beam energy and has 

been empirically determined to be 2.8 gE  [24], where gE  is the bandgap of this InGaP 

sample, 1.81 eV≈  at 300 K. 
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The total minority population is then I G
e

τ  where I is the probe current and τ  is the 

minority carrier lifetime in the InGaP heterostructure, 13.1 ns≈  [14]. 

The minority carrier concentration in the generation region can then be calculated 

by using a hemispherical generation volume approximation for a 20 keV, 0.6 nA electron 

beam, following the development of Kanaya and Okayama [25].  This yields a minority 

carrier concentration of 17 32.70 10  cm−≈ � .  Although pΔ ~ p  the low injection limit 

model is still believed to be experimentally valid and therefore all of the experimental 

work will be done below the low injection limit. 

In addition to the low injection limit model there are two other known ideas that 

are used in this work.  The diffusion length of the InGaP/GaAs/Ge material is of 

sufficient magnitude that it does not approach the optical imaging system’s resolution of 

0.4 mμ≈  [26].  Finally is the assumption that the experimental results can be modeled as 

one dimensional, steady state diffusion due to the characteristics of the electron beam line 

scan, which will be discussed in more detail in the next section. 

D. 1-D STEADY STATE MATHEMATICAL MODEL DEVELOPEMENT 

1. The Non-homogeneous Second Order Differential Equation 
Simplified 

In this section the model for diffusion from a one dimensional source will be 

developed.  An electron beam will generate a charge along a line and diffusion will be 

observed in one dimension from that line.  The details of the experimental setup will be 

discussed in Chapter III.  The one dimensional model allows the continuity equation to be 

greatly simplified and the minority carrier diffusion length easily extracted.  The one 

dimensional steady state equation for the extraction of minority carrier diffusion length is 

developed, starting with the continuity equation for electrons in a p-type material: 

( )1
n n n

dn G U J
dt q

= − + ∇
uur
�         (1) 
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where dn
dt

is the time rate of change of electrons per unit volume per second.  This is 

given in terms of the generation rate, 3

1
nG

cm s
⎡ ⎤
⎢ ⎥⎣ ⎦

, and the recombination rate, 

n
n

nU
τ
Δ

= for low injection.  nΔ  is the number of excess minority carriers available for 

recombination and nτ  is the effective lifetime for the electrons, which are non-

equilibrium.  nJ
uur

 is the current density vector and is defined by the equation: 

2n n n
CJ q nE qD n

cm s
μ ⎡ ⎤= + ∇ ⎢ ⎥⎣ ⎦

uur ur ur
       (2) 

where nμ  is the mobility of minority carriers (electrons) and E
ur

 is the externally applied 

electric field.  nD  is the diffusion coefficient and is related to the diffusion length the by 

the equation: 

diff
kTL D
e

μ τ τ= =         (3) 

Using these relationships and substituting them into the continuity equation we get 

21
n n

eff eff

dn n LG q nE q n
dt q

μ
τ τ

⎡ ⎤⎛ ⎞
= − + ∇ − ∇⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

uur ur ur
�       (4) 

For this analysis we are assuming one dimensional, steady state conditions therefore the 

time rate of change of the minority carrier distribution is zero and the electric field is 

constant in the x-direction so that E qEx=
ur r

.  Equation (4) then becomes 

2 2

20 n n
eff eff

n dn L d nG E
dx dx

μ
τ τ

= − + −        (5) 
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Rearranging equation (5) and multiplying through by 2
eff

L
τ

we get 

2

2 2 2 2
n eff eff

n

Ed n dn n G
dx L dx L L

μ τ τ
+ − = −        (6) 

and since there is no electric field applied 0E = .  So now equation (6) can be simplified 

to 

2

2 2 2
eff

n
d n n G
dx L L

τ
− = −          (7) 

Equation (7) is a second-order non-homogeneous equation that can be easily solved for 

the minority carrier distribution.  However, since we are assuming that due to the small 

thickness of the material there is no bulk photo-generation [10] the generation rate is zero 

away from the actual excitation source and thus Equation (7) can now be written as 

2

2 2 0d n n
dx L

− =           (8) 

This is a second-order homogeneous equation whose general solution is 

/ /( ) x L x Ln x Ae Be−= +          (9) 

If we apply the boundary conditions at max0, ( ) and at , ( ) 0x n x n x n x= = = ∞ =  then 

Equation (9) becomes 

/
max( ) x Ln x n e−=          (10) 

Equation (10) represents the minority charge carrier distribution assuming one 

dimensional diffusion of the excess carriers. 

2. Charge Carriers Concentrations in Semiconductors 

At a given temperature, thermal energy in a semiconductor results in the 

excitation of electrons from the valence band to the conduction band and leaves an equal 

number of holes in the valence band [9].  These bands are separated by a region of 

forbidden energy levels called the band-gap.  Once the electron has gained enough energy 
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to move to the conduction band it is free to move within the band.  The hole that is left 

behind by the excited electron is free to be filled by another electron in the valence band.  

Therefore, the holes are treated as positive charge carriers within the valence band and 

electrons are treated as negative charge carriers within the conduction band. 

An undoped semiconductor at steady state and in thermal equilibrium will have 

the same number of positive charge carriers as negative charge carriers.  The equation 

that governs this equilibrium condition is called the mass action law, 

2
o o in p n=           (11) 

where on  is the electron charge carrier concentration, op  is the hole charge 

concentration, and in  is the average intrinsic carrier concentration. 

When a semiconductor is doped with impurities, they can be in the form of donor 

impurities or acceptor impurities.  Donor impurities increase the number of free electrons, 

whereas, acceptor impurities lack a certain number of electrons needed to complete a 

bond thus creating a hole.  N-type semiconductors are doped with donor impurities that 

contribute a number of electrons that are free to move in the conduction band.  P-type 

semiconductors are doped with acceptor impurities that have excess holes in the valence 

band.  In n-type and p-type semiconductors the concentration of dopant impurities is 

 or D AN N  respectively, which leads to the equations 

2  (p-type material)i po po po An n p n N= =       (12a) 

2  (n-type material)i po po po Dn n p p N= =       (12b) 

where in Equation (12a)  and po pon p are the electron concentration in p-type material 

(minority electron carrier concentration) and hole concentration in n-type material 

(minority hole carrier concentration) respectively. 

Under external excitation, such as photons or an electron beam, additional 

electron-hole pairs are produced in the semiconductor, and Equations (11), (12a), and 

(12b) are no longer applicable [14].  In p-type semiconductors under low excitation 
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conditions ( pΔ << )op  the change in majority carrier concentration is small compared to 

the large change in minority carrier concentration ( nΔ >> )on  when externally excited.  

Therefore, it is the behavior of the minority carrier concentration that is important in 

understanding semiconductor electrical and optical properties, under non-equilibrium 

conditions. 

3. Diffusion, Mobility, and Lifetime 

Diffusion in a semiconductor is the process of charge carriers moving from a 

region of high concentration to a region of low concentration.  The diffusion coefficient 

or the diffusivity can be written as 

thD v≡ * l           (13) 

where thv  is the thermal velocity of the electrons and l  is the mean free path.  Using the 

theorem for the equipartition of energy for the one-dimensional case, 

21 1
2 2n thm v kT= , 

Equation (13) becomes 

( ) 2 * ** * n n n n
th th th th

n

m mkTD v l v v v
q m q

μ μτ
⎛ ⎞⎛ ⎞ ⎛ ⎞

= = = = ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

kTD
q

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

* nμ          (14) 

where k is the Boltzmann’s constant, T is the temperature in Kelvin, and μ  is the 

mobility.  The diffusion coefficient is a function of mobility, which is a measure of the 

ease with which charge carriers move in the material [27].  The mobility will differ for 

electrons compared to holes because it is a function of their effective masses which also 

differ.  The diffusion coefficient is also used to calculate one of the most important 

parameters of a semiconductor, the minority carrier diffusion length. 
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The diffusion length is the average length a charge carrier, electron or hole, 

diffuses before it recombines.  The diffusion length ( )diffL  is given by the equation 

diff
kTL D
e

μ τ τ= =         (15) 

with all the variables previously defined from Equation (3).  Equation (15) contains all 

the important parameters that determine a semiconductor’s electrical properties such as; 

carrier diffusion length, mobility, and minority carrier lifetime. 

In this work, cathodoluminescence was used to measure the luminescent intensity 

of the electron beam on the semiconductor sample.  Then using the 1/slope technique 

developed and refined in [14] and described in Chapter 4, the diffusion length of the 

semiconductor sample is determined.  The maximum luminescent intensity is then 

graphed and compared to the extracted minority carrier diffusion length to determine if 

any correlation between them exists. 

4. Luminescence in Semiconductors 

One primary mechanism of luminescence in semiconductors involves the 

radiative recombination of electron-hole pairs [20].  An incident photon initially excites a 

valence band (VB) electron to the conduction band (CB).  The electron then loses the 

excess energy as it interacts with the lattice, and falls close to the minimum CB energy.  

In one process, the electron can be captured into an excited state of a luminescent center 

or an activator.  The electron then falls down in energy to the ground state of the activator 

and recombines with a hole in the VB releasing a photon, which is the luminescent 

emission.  The photon released has energy that is approximately equal to the band gap 

energy of the material [10].  The electron-hole recombination is primarily radiative and is 

referred to as a radiative recombination process.  It is this process of 

cathodoluminescence, shown in Figure 8 that is used to ultimately measure the diffusion 

length of the material in this work. 



 24

0

Ev

Ec

Ec + X

VB

CB

hole h+

free e-

Eg

Electron Energy, E

hv = Eghv > Eg

0

Ev

Ec

Ec + X

VB

CB

hole h+

free e-

Eg

Electron Energy, E

hv = Eghv > Eg

 
Figure 8.   Electron-Hole Creation via Photon Absorption and Recombination [From: 

14]. 

 

While radiative recombination under e-beam excitation leads to 

cathodoluminescence, impurities and defects are known to introduce recombination 

processes that do not emit photons and are referred to as non-radiative recombination 

[20], [28], [29].  Non-radiative recombination is comprised of three main processes; 

Shockley-Read-Hall (SRH) recombination, Auger recombination, and surface 

recombination.  The SRH recombination mechanism involves deep impurities or defects 

that are usually situated in the middle of the forbidden gap between the valence and 

conduction band [30].  These intermediate energy states or traps can temporarily capture 

an electron from the conduction band and localize it.  Figure 9 shows the forbidden gap 

of a semiconductor that has an energy trap within it. 
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Figure 9.   Schematic Representation of the Trapping Mechanism [From: 32]. 

 

The time the electron spends trapped at the localized energy level, tE , depends on the 

energy depth of the trap from the conduction band.  After awhile, strong lattice vibrations 

due to thermal excitation will return the electron back into the conduction band.  The time 

interval between photo-generation and recombination can be relatively long if the 

electron remains trapped at tE  for a considerable length of time or if the electron is 

captured multiple times before recombination [10].  In low injection, the majority-carrier 

density is much greater than the minority-carrier density.  After minority-carrier capture, 

the center is reset by the subsequent capture of a majority carrier.  Because of the 

relatively high concentration of majority carriers, capture occurs at a very high rate.  

Thus, in low injection, the SRH lifetime is determined solely by the minority-carrier 

capture rate.  In high injection or with large cross-section ratios, this assumption cannot 

be made [21]. 

Auger recombination occurs when free energy obtained during recombination is 

transferred to an electron or a hole as kinetic energy which is subsequently dissipated by 

emission of multiple phonons until the charge carrier reaches the band edge [30].  

Usually, Auger recombination is important when the carrier concentration is very high as 

a result of either high doping or high injection level [9]. 

 



 26

Auger recombination effects are most frequently seen at high injection levels in Light 

Emitting Diodes (LEDs) and solid state lasers.  The recombination rate varies with 2np in 

p-type nondegenerate semiconductors.  Thus, the Auger process is usually seen at 

relatively high carrier concentrations [21]. 

The final non-radiative recombination source that will be introduced is surface 

recombination.  The surface of a semiconductor is an inherent source of various defects.  

Because of the abrupt discontinuity of the lattice structure at the surface, a large number 

of localized energy states or generation-recombination centers may be introduced at the 

surface region.  These surface states greatly enhance the recombination rate at the surface 

region [9].  They are caused by dangling bonds at the crystal surface that result from the 

interruption of periodicity. 

Also, the surface is a getter for impurities.  These impurities range from atmospheric 

gases to metals.  The surface impurities may also be a source of surface states and may 

coexist with dangling bond states [21]. 

Now that both radiative and non-radiative lifetimes have been explained it is time 

to show how they relate to the minority carrier lifetime.  The recombination centers are 

characterized by a rate of recombination 1
rR τ −∝ , where rτ  is a recombination time.  

When competitive radiative and non-radiative centers are both present, the observable 

lifetime is give by 

1 1 1

r nrτ τ τ
= +           (16) 

where  and r nrτ τ are the radiative and non-radiative recombination lifetime, respectively.  

Also, nrτ , in general, is the resultant of the multiple non-radiative recombination 

processes already introduced and can be denoted 

11
nri

inr

τ
τ

−=∑           (17) 
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Rearranging Equation (16) we get 

r nr

r nr

τ ττ
τ τ

=
+

          (18) 

If we make the assumption that rτ >> nrτ , as is often the case [20] then Equation (18) 

becomes 

nrτ τ=            (19) 

which implies that the minority carrier lifetime is primarily dependent on the non-

radiative lifetime.  However, non-radiative lifetimes are dependent on material, doping, 

lattice matching, etc.  The assumption that the radiative lifetime is much greater than the 

non-radiative lifetime causing the effective lifetime to be primarily dependent on the non-

radiative lifetime is consistent with theory and work conducted in [9], [20], [21], and 

[28]. 

Lastly, the theoretical derivation of intensity distribution for recombination 

resulting from diffusion in one dimension is given.  Previous work has shown the I n�  

relationship, where n is the minority carrier concentration, with respect to diffusion 

length as  

Intensity ~
diff

r
Len
r

−

≈  for the diffusion into three dimensions from a point source and 

Intensity ~ o
diff

rn K
L
⎡ ⎤

≈ ⎢ ⎥
⎢ ⎥⎣ ⎦
�  for the diffusion into two dimensions.  For this work from 

Equation (10) the distribution, and hence the photon intensity from electron-hole 

recombination can be approximated as: 

n ~ max
diff

x
LIntensity I e

−

=         (20) 

The boundary conditions max0, ( ) and at , ( ) 0x I x I x I x= = = ∞ =  are consistent with the 

observed results. 
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Now Equations (10), (19), and (20) can be used to show the relationship between 

the minority carrier concentration, the minority carrier lifetime, and the intensity.  The 

relationship 

max
b

gen
GIn n

e
τ

= =          (21) 

where all variables are as previously defined, is shown in [20] and represents the minority 

carrier population at the generation point.  Equation (21) can be substituted into Equation 

(20): 

max( ) diff diff

x x
L LbGIn x n e e

e
τ− −

= = ~ diff

x
Lb

r

GIIntensity e
e
τ

τ

−

= .    (22) 

In the low-injection case, the intensity is proportional to the minority carrier 

concentration with the constant of proportionality equal to the inverse of the radiative 

lifetime, rτ .  Since the intensity is dependent on electron beam current there can be 

assumed a linear dependence of the intensity on the stationary excess carrier density.  

Therefore, the total intensity can be expressed as 

3( )
tot

rV

n rI f d r
τ

Δ
= ∫          (23) 

where f is a function containing correction parameters of the detection system and factors 

that account for the fact that not all photons generated in the material are emitted (due to 

optical absorption and reflection losses).  This is the three dimensional equation and can 

be simplified to Equation (24) since we are only dealing with a one-dimensional analysis. 

( )
tot

r

n xI f dx
τ

Δ
= ∫          (24) 
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In Equation (24) nΔ is the excess carrier density ( )on n nΔ = − , rτ  and f are as previously 

defined [20].  The total intensity is just the total area beneath the intensity curve shown in 

Figure 10 and calculated by 

max
0

2 diff

x
L

totI I e dx
−∞

= ∫          (25) 

 

 

Figure 10.   A Normalized Intensity Curve Illustrating the Physical Definition of Total 
Intensity 

Therefore,  

max2tot diffI I L=          (26) 

Now Equations (24) and (26) can be related as follows 

max
( )2 diff tot
r

n xI L I f dx
τ

Δ
= = ∫  and nΔ  can be represented by on n nΔ = −  
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where max max and 
o

diff diff

xx
L L

on n e n n e
−−

= =  and since we can also assume that n >> on  then 

n nΔ =  so we get the equation 

max
max

0

*2 diff

x
L

diff
r

f nI L e dx
τ

−∞

= ∫         (27) 

With the further assumption f is constant and taking the integral in Equation (27) the 

equality becomes 

max max2 r

fI n
τ

=          (28) 

where maxn is a constant, rτ is as defined previously, and D A Rf f f f= .  The constant 

factor Df  accounts for such parameters of the detection system as the overall collection 

efficiency of the light collector, the photomultiplier (or solid-state detector) quantum 

efficiency, the transmissive efficiency of the monochromater, and the signal amplification 

factor.  The Rf  constant factor accounts for the refraction and total internal reflection.  

The Af  constant factor or absorption loss factor arises from a decrease in intensity of the 

form exp( )dα− , where α is the absorption coefficient and d is the length of the photon 

path in the interior of the material [20].  Since we are working with a one dimensional 

analysis, Af  is not applicable and the other two constant factors only affect the 

magnitude of the intensity but not the behavior and will not be included in this analysis.  

Therefore, we now have the equation: 

max
max 2 r

nI
τ

≈           (29) 

To get the relationship between τ  and the intensity, the equation 

max *n g τ=           (30) 

must be applied to Equation (29).  In Equation (30), g is the minority carrier generation 

rate and the other variables are as previously defined. 
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When Equation (30) is substituted into Equation (29) we get 

max
*

2 r

gI τ
τ

≈           (31) 

If we use the relationship for the lifetime derived in Equation (19) we obtain 

max
*
2

nr

r

gI τ
τ

≈           (32) 

Equation (32) shows that if the radiative recombination lifetime gets shorter then the 

maximum intensity will increase, whereas, if the radiative recombination lifetime gets 

longer, the intensity will decrease for a fixed nrτ .  Using this idea and revisiting the 

assumptions that rτ  is constant and >> nrτ  will be key ideas in analyzing the variations in 

intensity and diffusion length and comparing their correlation. 
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III. EXPERIMENTAL APPARATUS 

A. DIRECT DIFFUSION IMAGING 

The direct diffusion imaging technique first presented in [27] and again in the 

Mill’s thesis, [14], illustrates a way to experimentally obtain the diffusion length of 

minority carriers in semiconductor materials.  The focus of this work is also on the p-type 

layers of a triple junction solar cell.  This technique directly images the radiative 

recombination of electron-hole pairs.  This process is similar to conventional 

cathodoluminescence (CL), where the external source for generating electron-hole pairs 

is an electron beam.  The electron beam is held over a fixed position on the sample and 

the production and radiative recombination process of electron-hole pairs are at steady-

state.  In standard CL, much of the light does originate at or very near the point of charge 

generation, however, any distribution of the luminescence, whether due to drift, diffusion 

or interaction volume is lost.  In transport imaging, the spatial information of the 

electron-hole pair recombination is retained, therefore, the transport of minority charge 

can be observed.  This method can be applied without any additional sample preparation 

or need for electrical contacts on the sample [14]. 

B. EQUIPMENT 

The system consists of a JEOL 840A SEM with an internal optical microscope.  A 

modified, liquid helium-cooled SEM stage from Oxford Instruments allows for the 

sample to be studied at temperatures from 5 – 300K [14].  Variable temperature will not 

be used for the purposes of this thesis, but is mentioned for completeness.  Figure 11 

shows the SEM with the modified stage and the optical microscope attached. 
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Figure 11.   JEOL 840A SEM with Modified Stage and Optical Microscope [From: 14]. 

 

The optical detector is a thermoelectrically-cooled Apogee silicon charge coupled 

device (CCD) camera with a 2184 x 1472 pixel array.  During normal operation, the CCD 

camera is normally cooled to approximately 20  C− o  to reduce the noise and collects 

unfiltered light from 400 to 1100 nm wavelengths.  The pixel size of the camera is 8.6 x 

8.6 mμ  and the resolution of the resulting image is approximately 0.4 pixel
mμ .  This 

resolution is close to the diffraction limit for the observation of luminescence from room 

temperature GaAs at 870 nm.  Figure 12 shows the CCD camera and Figure 13 shows a 

schematic of the full system with the modified stage. 
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Figure 12.   Apogee 2184 x 1472 Cooled CCD [From: 14]. 
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Figure 13.   Schematic of Transport Imaging Components [From: 14]. 

 

The SEM operating modes used in this work are the picture mode, line mode, and 

spot mode. These modes refer to the rastering of the electron beam in an area (picture), in 

a line (line), or a fixed (spot).  The picture mode is primarily used to ensure that the dark 

and light dislocation bands are perpendicular to the line scan since we are only interested 

in the variation of the diffusion length within the bands themselves.  This mode was used 

in conjunction with the spot mode to get a good focus of the sample area and to choose a 

sample area to be scanned that had minimal surface defects. 
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In picture mode, the SEM electron beam is rastered in  and x y  and the 

luminescence is imaged by the CCD.  Figure 14 shows an image taken in SEM picture 

mode of doped p-type .49 .51In Ga P .  .49 .51In Ga P  is comprised of 49 percent indium and 51 

percent gallium.  A detailed description of this material’s growth process and 

characteristics are presented in Chapter IV. 

 

 

 
Figure 14.   Image of InGaP in Picture Mode at a Probe Current of 106 10  Ax −  and electron 

beam energy of 20 keV (400 mμ  x 337 mμ ). 

 

The bright edge with the large luminescence spot in the bottom right corner results from 

the SEM scanning one edge of the raster area longer than the rest of the area.  For 

synchronization of the scan, Figure 15 shows a combined image of the picture mode with 

the line scan mode that was used to ensure a perpendicular line scan. 



 37

 
Figure 15.   Image of InGaP in Combined Picture and Line Scan Modes with the Electron 

Beam Rotated to Scan Horizontally (400 mμ  x 337 mμ ). 

 

In a majority of the work accomplished for diffusion length imaging, the spot 

mode is the primary mode of operation.  In the spot mode the electron beam is held fixed 

on the sample and the distribution of the resultant luminescence in two dimensions show 

the diffusion of the minority charge carriers [14].  Figure 16 shows a spot mode image 

taken on the sample of .49 .51In Ga P .  It is important to note that the bright, observable spot 

that is seen is much greater, in this material, than the diameter of the incident electron 

beam. 
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Figure 16.   Image of InGaP in Spot Mode with the Optical Reflection in the Lower Left at 

a Probe Current of 106 10  Ax −  and electron beam energy of 20 keV (400 mμ  x 
337 mμ ). 

 

The spot image is the actual sample luminescence created by the electron-hole 

recombination as the electrons diffuse away from the generation source.  So the region of 

interaction is what is analyzed in order to gather information about the minority charge 

carrier properties.  In this thesis the spot mode was mainly used in conjunction with the 

picture mode to ensure focus, to extract sample data for diffusion length calculation, and 

to determine the effects on the diffusion length caused by the small optical reflection spot 

that is seen just to the bottom left of the primary electron beam spot shown in Figure 16.  

The results of this analysis will be discussed in the next chapter of this thesis. 

The primary mode of operation for this work was the line scan mode.  Figure 17 

shows an example of a horizontal line scan on the InGaP sample.  The line scan generates 

a one dimensional line across the surface of the thin sample simulating a long thin wire.  

This allows a one dimensional analysis to be conducted as the minority carrier population 

has net diffusion in one direction away from the point of generation.  The line scan mode 

can be used to make a horizontal line scan or a vertical line scan by adjusting the beam 

rotation angle on the SEM control panel. 
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The line scan mode with a horizontal rotation imaged across the dislocation bands was 

seen in Figure 15, where as the line scan mode with a vertical rotation imaged within the 

dislocation bands is shown in Figure 18. The next chapter explains the modeling and 

analysis technique used to extract the diffusion length and maximum intensities from the 

line scan image. 

 

 
Figure 17.   Image of InGaP in Line Scan Mode Rotated Horizontally at a Probe Current 

of 106 10  Ax −  and electron beam energy of 20 keV (400 mμ  x 337 mμ ). 
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Figure 18.   Image of InGaP in Combined Picture and Line Scan Modes with the Electron 

Beam Rotated to Scan Vertically (400 mμ  x 337 mμ ). 
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IV. DIFFUSION LENGTH AND INTENSITY VARIATION 
CORRELATION STUDY 

A. TRIPLE JUNCTION SOLAR CELL MATERIAL DESCRIPTION 

Using the approach that will be described in the next section, the spatial variations 

in diffusion length and luminescent intensity will now be measured and an analysis of the 

results will be presented.  The sample is a double heterostructure of the top junction p-

type layer within the triple junction solar cell and is composed of 

AlGaInP/InGaP/AlGaInP grown via metalorganic chemical vapor deposition (MOCVD) 

on (001) Ge substrates. 

The double heterostructure configuration and the band diagram of the sample is 

illustrated in Figure 19. 
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Figure 19.   General Schematic of a Double Heterostructure and the Band Diagram [From: 

14]. 

 

The double heterostructure is important for transport imaging for two reasons.  The thin 

double heterostructure can be treated as a two dimensional structure, which can be further 

simplified to a one dimensional structure using the line scan mode mentioned in Chapter 

three.  Also, surface recombination of the minority charge carriers is eliminated by the 

two barrier layers.  By removing the potential influence of surface recombination, the 

measured diffusion lengths are more fundamentally representative of the layer material 

[14]. 
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The .49 .51In Ga P  layer is the top cell in this triple junction solar cell sample.  The 

layer thickness of .49 .51In Ga P  for this sample is on the order of ~.7 mμ .  This particular 

alloy of InGaP has a band-gap of 1.81 eV which is the largest band-gap of all the cells 

and therefore absorbs the higher energy photons compared to the rest of the cell.  Table 2 

shows the band-gap for some of the various types of semiconductor materials used in 

solar cells. 

 Material Band-gap Energy (eV) 
In49Ga51P 1.81 

GaAs 1.42 
Si 1.12 
Ge .661 

 

Table 2.   Energy Band-gap of Various Semiconductor Materials. 

 

The InGaP layer is arguably the most important layer in the triple junction solar cell.  As 

shown in Figure 2 the triple junction solar cell has three cell layers stacked in series.  In a 

series solar cell, the limiting cell is the one that produces the least amount of current.  The 

I-V (current vs. voltage) characteristic curves for Ge, Si, GaAs, and InGaP solar cells 

under AM0 solar illumination are shown in Figure 20. 
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Figure 20.   I-V Curve for Ge, Si, GaAs, and InGaP Cells Under AM0 Solar Illumination 

[From: 14]. 

 

InGaP clearly produces the largest open circuit voltage; however, it also has the lowest 

short circuit current.  Therefore, in triple junction solar cells, the InGaP layer is the 

limiting layer in regard to current flow throughout the cell [14]. 

Another characteristic of InGaP epitaxial material involves the ordering or 

disordering of the indium and gallium atoms.  As mentioned briefly in Chapter three, 

.49 .51In Ga P  is the alloy of InGaP that is lattice matched to Ge.  The ordering of InGaP is 

due to the atomic arrangement of the Group III elements (In and Ga) on the Group III 

sub-lattice [14].  Figure 21 illustrates this arrangement by showing the zinc blende (ZnS) 

cubic crystal structure, which is the crystal structure of InGaP. 
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Figure 21.   Zinc Blende Cubic Crystal Structure [From: 14]. 

 

The atoms labeled S are the Ga/In atoms and the atoms labeled Zn are the P atoms.  The 

ordering of the Ga/In plane within the crystalline structure is characterized by CuPt 

ordering, one of the most widely studied types of long range ordering with alternating 

planes occupied by atoms from the Group III elements.  Figure 22 shows a simulation of 

the ordering and disordering of Group III or V sub-lattice for electron diffraction patterns 

done by Dobro ka,  V vra , and Wallenbergč á  that shows ordered and disordered domains 

of the CuPt-type ordering in the Ga/In plane [14]. 

 
Figure 22.   Ordered and Disordered Domains of CuPt Ordering in III-V Semiconductor 

Alloys [From: 14]. 

 

The importance of the ordering in the Ga/In planes of InGaP is that the band-gap 

of InGaP is dependent on the ordering.  The ordering allows for additional tuning of the 

band-gap within the InGaP layer of the triple-juction solar cell. 
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Higher efficiencies of output power can be obtained with a larger band-gap, since the 

tuning of the band-gap increases the open circuit voltage while not changing the short 

circuit current [14].  The .49 .51In Ga P  sample used for this work was a lattice matched, 

ordered alloy. 

B. DIFFUSION LENGTH DATA EXTRACTION 

1. Slope Analysis Estimation 

As illustrated in Equation (20), the diffusion length of minority charge carriers in 

a sample, excited externally at a point source, can be extracted by calculating the slope of 

a semi-logarithmic plot of intensity versus position.  The slope would be represented on 

this semilog plot as  

1

diff

m
L
−

=           (33) 

where m is the slope and diffL  is as previously defined.  The sample used in this work was 

a p-type .49 .51In Ga P  sample doped at a level of 17 31.10 10  cmx −  and is used to illustrate the 

1/slope technique of extracting diffusion length.  The effective minority carrier lifetime 

of the double heterostructure, .49 .51In Ga P , taken from [14] and determined from time-

resolved photoluminescence is 13.1 nanoseconds.  In Figure 17 an image of the diffusion 

of the minority charge carriers using the line scan excitation mode from the SEM at a 

probe current of 106 10  Ax −  and electron beam energy of 20 keV, for an exposure time of 

3 seconds was shown. 
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From the image, a vertical line profile is taken and imported into SigmaPlot, the 

graphing and data analysis software used in this work.  The data are then normalized and 

the noise floor of the CCD camera is subtracted via the equation: 

Noise
Norm

Max Noise

I II
I I

−
=

−
         (34) 

Figure 23 shows a plot of the normalized intensity as a function of position.  A semi-

logarithmic plot of the data is shown in Figure 24. 
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Figure 23.   Normalized Intensity as a Function of Position. 
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Figure 24.   Semi-log Plot of the Normalized Intensity as a Function of Position. 

 

The semi-logarithmic plot of the normalized intensity versus the position from the 

center of the charge generation as shown in Figure 24 is used to choose how far away 

from the charge generation center to evaluate the slope value.  The errors in the slope 

value become smaller as the distance from the line center increases; however, the farther 

away from the line center, the more noise that distorts the data [14].  For this sample the 

slope value was extracted between 2 and 15.2 microns from the charge generation center.  

Figure 25 shows the data from the left and right sides of the normalized distribution and 

the linear regression lines extracted from the data. 
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Figure 25.   Semi-log Plot of Normalized Intensity as a Function of Position and the 

Linear Regression Lines Used in Slope Extraction. 

 

SigmaPlot contains a subroutine that was used to extract the slope value, the 

standard error, and the 2R  from the linear regression lines shown in Figure 25.  The slope 

value is used to estimate the diffusion length, and the 2R  value is used to determine how 

well the data fit the linear regression.  Table 3 shows the results of the linear regression 

and the estimated diffusion lengths extracted for the luminescence profiles to the right 

and left of the charge generation point [14]. 

 

 

SAMPLE SLOPE StdErr  
diffL ( )1 / slope  2R  

 -1μm  -1μm  μm   
InGaP/Ge (R) -.237 .0025 4.22 .997 
InGaP/Ge (L) .254 .0014 3.94 .999 

 
Table 3.   Linear Regression and the Estimated Diffusion Lengths Results Extracted for the 

Luminescence Profiles to the Right and the Left of the Charge Generation Point. 
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2. Eliminating the Diffusion Length Associated with the Optical 
Reflection 

As shown in Figure 25 there are two sides to the normalized intensity distribution.  

This is due to the fact that the electrons diffuse out in opposing directions from the 

generation line.  In Figure 16 an image was shown that was taken in the SEM’s spot 

mode.  To the lower left of the primary electron beam spot there is a small secondary spot 

that is the result of the secondary reflection of the main spot and the collecting optics in 

the optical system.  This secondary reflection is also present in the line scan mode located 

in the same relative position as in the spot image and illustrated in Figure 26. 

 

 
Figure 26.   Location of the Secondary Reflection in the Spot Beam Relative to the 

Secondary Reflection in the Line Scan. 

 

Created using MicroCCD, an imaging software tool, Figure 26 is a combined image of 

the spot beam image and the horizontal line scan image.  The secondary reflection from 

the spot image can be seen to be inline with the secondary reflection from the line scan 

image.  Using MicroCCD, data are extracted from the horizontal line scan image using a 

vertical line profile shown in Figure 27. 
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Figure 27.   Vertical Line Profile Taken Through the Secondary Reflection. 

 

Figure 28 shows the actual and normalized intensity profiles of the horizontal line scan 

beam with a small bump in the curve where the reflection spot is located. 
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Figure 28.   Location of the Reflection Spot in the Normalized Intensity and Semi-log 
Normalized Intensity Profile Curves. 

 

A linear regression analysis is then applied to find the diffusion length.  Table 4 lists the 

diffusion lengths for several vertical line profiles for the left and right sides of the 

normalized intensity distribution and the value of the diffusion length determined for a 

vertical line profile in [14] in the .49 .51In Ga P  sample at this doping concentration and with 

this specific scan rotation.  Figure 29 illustrates the left and right side diffusion lengths 

extracted over a 60 micron portion of the horizontal line scan in which very few 

imperfections were visible in the sample. 
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diffL ( )1 / slope  
Right Side 

diffL ( )1 / slope  
Left Side 

Ave 
diffL ( )1 / slope  

From Ref. 5 
μm  μm  μm  

4.18 3.94
4.17 3.94
4.18 3.92
4.17 3.93
4.15 3.90
4.14 3.92
4.17 3.91
4.14 3.97
4.16 3.94
4.17 3.93
4.18 3.94
4.18 3.90
4.16 3.88
4.18 3.94
4.17 3.91
4.18 3.94
4.19 3.91
4.20 3.92
4.18 3.93

4.20 3.93

3.9 

 
Table 4.   The Left and Right Side Diffusion Lengths Over Several Vertical Line Profiles 

and the Previously Measured Diffusion Length from [From: 14]. 



 53

Position (microns)

10 20 30 40 50 60 70 80 90

D
iff

us
io

n 
Le

ng
th

 (m
ic

ro
ns

)

3.7

3.8

3.9

4.0

4.1

4.2

4.3

Right Side Diffusion Length
Left Side Diffusion Length
Diffusion Length (Ref 5)

 
Figure 29.   Left and Right Side Diffusion Lengths Extracted Over a 60 Micron Portion of 

the Horizontal Line Scan. 

 

It is important to compare the left and right side diffusion lengths and realize that in every 

case the side with the small bump due to the secondary reflection resulted in a diffusion 

length that was ~ 4 7 percent−  larger.  It is apparent from the extracted data that the 

secondary reflection causes additional luminescence in that area of diffusion as we move 

away from the generation point source.  That results in the artificially higher diffusion 

length on the right side of the intensity distribution.  Since the secondary reflection is not 

a generation point source, but is a result of the optics of the system then its contribution 

to the luminescence intensity can be deemed invalid and the data for the right side of the 

normalized intensity distribution curve should be discarded. 

In the case of the vertical line scan, the line scan is rotated 90 degrees; however 

the position of the optical system remains the same.  This means that the position of the 

secondary reflection does not rotate and remains to the lower left of the spot beam.  

Therefore, the secondary reflection is on the left side of the vertical line scan.  This 
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corresponds to the left side of the normalized intensity distribution curve.  However; the 

secondary reflection is only slightly to the left of the maximum luminescent intensity, 

therefore, the vertical line scan for the most part overlaps the secondary reflection.  This 

can be demonstrated by combining the spot image and the vertical line scan image in 

MicroCCD.  Figure 30 shows the combined image of the electron beam spot and the 

vertical line scan. 

 

 
Figure 30.   Combined Image of the Electron Beam Spot and Vertical Line Scan. 

 

For a vertical line scan the luminescence and position data are extracted via a horizontal 

line profile in MicroCCD.  The linear regression analysis is applied as before and the 

diffusion length results are listed in Table 5. 
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diffL ( )1 / slope  
Right Side 

diffL ( )1 / slope  
Left Side 

Ave 
diffL ( )1 / slope  

From Ref. 5 
μm  μm  μm  

3.51 3.51
3.51 3.51
3.53 3.51
3.53 3.51
3.50 3.52
3.52 3.51
3.49 3.51
3.50 3.50
3.49 3.53
3.50 3.50
3.48 3.49
3.49 3.49
3.47 3.50
3.52 3.50
3.51 3.52
3.51 3.53
3.51 3.52
3.52 3.53
3.50 3.57

3.53 3.51

3.55 

 
Table 5.   The Left and Right Side Diffusion Lengths Over Several Horizontal Line Profiles 

and the Previously Measured Diffusion Length from [From: 14]. 

 

The average diffusion lengths for the vertical line scan are less than that for the horizontal 

line scan possibly due to crystallographic variations of scattering, thereby showing a 

dependence upon the direction within the semiconductor [14].  In addition, the secondary 

reflection is not predominately on the left side of the intensity distribution as it is in the 

horizontal line scan.  So the diffusion lengths extracted from the left and right sides are 

comparable and differ by only less than a half of a percent with the left side diffusion 

length being closer to the known average value of the diffusion length in this orientation.  

So even though the secondary reflection is slightly on the left side of the normalized 
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intensity distribution curve, it does not have an appreciable effect on the differences in 

diffusion length.  Therefore, since the diffusion length on the left side is actually closer to 

the known average value of the diffusion length in this orientation, then the data for the 

right side can still be discarded for the purposes of this analysis. 

C. EXPERIMENTAL RESULTS 

1. Initial Observations of Spatial Variations of Diffusion Length and 
Intensity 

Although there has been a lot of investigations into dislocations in 

semiconductors and their correlation to luminescent intensity and minority carrier 

lifetime, there has been little data collected on diffusion length and how it varies with 

respect to dislocations in the crystal lattice structure.  The initial goal of the 

measurements were to determine if the spatial variations that appear as the light and dark 

bands could be correlated to measureable variations in minority carrier diffusion length.  

Figure 31 shows the picture mode of the general location on the sample that these 

horizontal line scan images were taken and then illustrates where within that area the line 

scans were actually acquired. 
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Figure 31.   Picture Mode Image Combined with Horizontal Line Images to Show 

Location of Line Scans on Sample (400 mμ  x 337 mμ ). 

 

The beam energy and probe current used to create the horizontal line scan beam were 20 

keV and 106 10  Ax −  respectively.  Additionally, the SEM beam was on continuously 

throughout the data collection process.  This eliminates any potential variation due to 

SEM filament differences or alignment. 

Since this work is investigating the diffusion length across several dislocations, 

one or two line profiles from MircroCCD will not suffice or are practical since the line 

scan is over several hundred pixels.  Therefore, a MATLAB program, contained in 

Appendix C, was developed to import the desired image, perform a linear regression to 

determine the slope of ( )I x , extract the maximum luminescent intensity and diffusion 

length over the entire line scan, and then plot them on the same graph to show their 

relationship.  Figure 32 shows the graphical results of the first horizontal line scan. 
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Figure 32.   Graphical Results Showing an Anti-correlation Between the Maximum 

Luminescent Intensity and Diffusion Length of the Horizontal Line Scan. 

 

Although it is not consistent across the full data set, there are obvious regions where there 

is an anti-correlation between the maximum luminescent intensity and the diffusion 

length along the horizontal line scan.  A few examples of these regions are shown in 

Figures 33, 34, and 35.  There is an approximate one to five percent variation in diffusion 

length spatially and these variations do not appear to be random but appear to be spatially 

varying in nature. 
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Figure 33.   Graphical Results Over a 25 Micron Region of the Horizontal Line Scan 
Showing an Anti-correlation Between the Maximum Luminescent Intensity and 

Diffusion Length. 
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Figure 34.   Graphical Results Over a 20 Micron Region of the Horizontal Line Scan 
Showing an Anti-correlation Between the Maximum Luminescent Intensity and 

Diffusion Length. 
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Figure 35.   Graphical Results Over a 20 Micron Region of the Horizontal Line Scan 
Showing an Anti-correlation Between the Maximum Luminescent Intensity and 

Diffusion Length. 

 

To ensure that the MATLAB code was written properly and that the horizontal 

line scan luminescent intensity correlated with the dislocation intensity profile on the 

picture mode image, MicroCCD was used to extract the maximum luminescent intensity 

from a line profile on one of the horizontal line scans.  Then the maximum luminescent 

intensity was extracted from a line profile on the picture mode image corresponding to 

the same vertical pixel value of the line profile used in the previous horizontal line scan.   

Figure 36 illustrates this comparison and shows that there is a correlation between the 

maximum luminescence intensity in the picture mode image and the horizontal line scan 

image. 
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Figure 36.   Correlation Between Picture Mode Intensity and Line Scan Mode Intensity at 

Similar Locations on the Sample. 

 

The difference in luminescent intensity is due to the different size areas over which the 

electron beam is scanned.  Therefore, the variations in the horizontal line scan diffusion 

length across the dislocations can be analyzed and compared with the maximum 

luminescent intensity to correlate diffusion behavior in the light and dark bands. 

2. Discussion of Analysis 

The results of the analysis on one of the horizontal line scans taken for different 

probe currents and scan speeds are summarized in Table 6. 
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Probe Current (A)/Exposure 
Time (sec)/Scan Speed 

Light Band 
Intensity/ 

Corresponding 
Diffusion Length 

(μm ) 

Dark Band 
Intensity/ 

Corresponding 
Diffusion Length 

(μm ) 

Percent 
Variation of 
Max and Min 

Intensity 

Percent Variation 
of Corresponding 
Diffusion Length 

7300 / 4.42 6991 / 4.65 4.2 4.9 
7390 / 4.53 7040 / 4.67 4.7 3.0 1e-9/10/TV 
7346 / 4.54 7164 / 4.62 2.5 1.7 
7834 / 4.44 7583 / 4.55 3.2 2.4 
8061 / 4.64 7727 / 4.55 4.1 2.0 1e-9/10/Slow 1 
8063 / 4.64 7876 / 4.53 2.3 2.4 
7676 / 4.48 7365 / 4.68 4.1 4.3 
7774 / 4.60 7434 / 4.69 4.4 1.9 1e-9/8/Slow 2 
7766 / 4.56 7589 / 4.64 2.3 1.7 
6538 / 4.38 6317 / 4.51 3.4 2.9 
6491 / 4.34 6066 / 4.46 6.5 2.7 6e-10/20/TV 
6590 / 4.35 6190 / 4.51 6.1 3.5 
7357 / 4.36 7127 / 4.48 3.1 2.7 
7338 / 4.36 7244 / 4.45 1.3 2.0 6e-10/20/Slow 1 
7289 / 4.39 6852 / 4.47 6.0 1.8 
7517 / 4.39 7211 / 4.49 4.1 2.2 
7483 / 4.38 7353 / 4.44 1.7 1.4 6e-10/20/Slow 2 
7400 / 4.39 6994 / 4.48 5.5 2.0 
6729 / 4.18 6517 / 4.35 3.2 3.9 
6852 / 4.27 6669 / 4.47 2.7 4.5 3e-10/50/TV 
6646 / 4.25 6297 / 4.38 5.3 3.0 
9349 / 4.72 9091 / 4.44 2.8 6.3 
9342 / 4.27 9240 / 4.39 1.1 2.7 3e-10/50/Slow 1 
9305 / 4.29 8884 / 4.45 4.5 3.6 
9276 / 4.20 8882 / 4.35 4.2 3.4 
9342 / 4.28 9080 / 4.43 2.8 3.4 3e-10/45/Slow 2 
9281 / 4.28 9208 / 4.36 0.8 1.8 
4905 / 3.79 4780 / 4.23 2.5 10.4 
5028 / 3.97 4808 / 4.31 4.4 7.9 1e-10/180/TV 
5133 / 4.24 4907 / 4.39 4.4 3.4 
5309 / 3.86 5162 / 4.25 2.8 9.2 
5472 / 4.10 5229 / 4.41 4.4 7.0 1e-10/180/Slow 1 
5545 / 4.23 5388 / 4.56 2.8 7.2 
5712 / 3.88 5579 / 4.18 2.3 7.2 
5856 / 4.07 5583 / 4.50 4.7 9.6 1e-10/180/Slow 2 
5903 / 4.14 5665 / 4.62 4.0 10.4 
5550 / 3.82 5405 / 4.39 2.6 13.0 
5683 / 4.14 5441 / 4.46 4.3 7.2 6e-11/300/TV 
5821 / 4.11 5557 / 4.67 4.5 12.0 
7025 / 3.84 6469 / 4.23 7.9 9.2 
6879 / 4.07 6613 / 4.45 3.9 8.5 6e-11/300/Slow 1 
7063 / 4.14 6778 / 4.73 4.0 12.5 
7452 / 3.88 7232 / 4.24 3.0 8.5 
7499 / 3.99 7181 / 4.61 4.2 13.4 6e-11/280/Slow 2 
7614 / 4.12 7377 / 4.73 3.1 12.9 

 

Table 6.   Maximum Luminescent Intensities in the Light and Dark Band and Their 
Corresponding Diffusion Lengths Over a 40 micron Portion of the Horizontal 

Line Scan (Position 1) 
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Tables 9 and 10 lists the results of the horizontal line scans for two additional positions 

and are located in Appendix A.  Only a specified portion of each line scan was used due 

to surface imperfections that cause dark spots that indicate additional local defects.  This 

table gives the peak luminescent intensities in the light and dark bands and the percent 

variations between these peak values over a length of 40 microns across each horizontal 

line scan.  It also contains the diffusion lengths corresponding to each of the peak 

luminescent intensities and lists their percent variation. 

The results in Figure 32 show that the peak luminescent intensities vary from 5 to 

10 percent in a region of approximately 5 mμ  around the dislocation and the diffusion 

lengths vary from 1 – 7 percent in the same region.  The greater the percent variation in 

luminescent intensity results in a greater percent variation in diffusion length.  As stated 

earlier, these variations do not appear to be random.  In some areas, there is a definite 

anti-correlation between the maximum luminescent intensity and the diffusion length.  

Since it is known that the non-radiative recombination lifetime at dislocations decrease, 

then it should be expected that the diffusion length would decrease in conjunction with 

the luminescent intensity given the assumption made earlier that rτ >> nrτ  and applied to 

Equations (15) and (18) [19], [20], [21].  However, this is not the case and so an alternate 

explanation must be made. 

The key idea is to find relationships between the maximum luminescent intensity, 

the minority charge carrier lifetime, and the diffusion length that match the behavior of 

the data that were extracted from the line scan.  These relationships were derived in 

Chapter 2 and are represented by Equations (15), (18), and (32).  However, in the limit 

with rτ >> nrτ , Equation (15), nr
diff nr

kTL D
e

μ τ τ= =  does not match the diffusion 

length behavior illustrated in Figure 32.  Therefore, we consider the case where nrτ  and 

rτ  are comparable. 

The actual equation for the minority charge carrier lifetime is given by Equation 

(18), rr nr

rr nr

τ ττ
τ τ

=
+

.  For many semiconductor materials the radiative lifetime is much 
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greater than the non-radiative lifetime, therefore the minority carrier effective lifetime 

depends only on nrτ .  However, the question arises when rτ  is comparable to nrτ  and rτ  

is not constant.  The minority carrier effective lifetime, determined by time resolved 

photoluminescence (TRPL), for this sample is listed in Table 7.  The radiative 

recombination lifetime for low injection is determined by the equation 

1 1
r B N B p
τ = =

� �
         (35) 

where p is the free hole concentration and the B-coefficient is the coefficient for radiative 

recombination determined by band theory.  Knowing these two variables the radiative 

lifetime can be calculated using Equation (35).  Equation (18) can then be used to solve 

for the total non-radiative lifetime.  All of the known values and the results of the 

calculations are listed in Table 7.  

 

In49Ga51P Variable Values 
Free Carrier Concentration 17 31  cme −  

B-coefficient 10 32.41  cm /e s−  
Radiative Lifetime 37.7 ns 
Effective Lifetime 13.1 ns 

Non-Radiative Lifetime 20.1 ns 

 

Table 7.   Known and Calculated Lifetimes for the 49 51In Ga P  Sample. 

 

The values in Table 7 represent the average different lifetime mechanisms over the entire 

sample and show that the radiative lifetime is comparable to the non-radiative lifetime.  

Figure 37 was produced by work done in [31] by using a form of Equation (16) and 

contains theoretical curves that show minority carrier lifetime as a function of dislocation 

density for a sample with a specific dopant concentration. 
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Figure 37.   Theoretical Values Calculated Using Equation (18), N is the Majority Carrier 

Concentration [From: 31]. 

 

The dislocation density for 49 51In Ga P  grown on a Germanium (Ge) substrate, which was 

the sample used in this work, was determined as shown in Figure 35. 

 The dislocation density was determined by first finding the pixel area of the 

image.  Then the area in microns was found by multiplying the pixel area with the square 

of the fixed resolution of the optical microscope and CCD camera which is 0.4 

/m pixelμ .  The number of dislocation lines for the area was obtained by first counting 

the number of vertical dark bands perpendicular to the intensity line profile represented in 

red and shown in Figure 38.  Using the fact that there are dark bands in both the 

horizontal and vertical directions that are perpendicular to each other, the number of dark 

bands determined vertically can be squared to give the number of dark bands in the area 

of the intensity line profile.  From this information the average dislocation density per 

unit area was determined to be ( )23 5 26.24 10  area/ 6.24 10  area/cmxy x m xδ μ−= = . 
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Figure 38.   Derivation and Calculation of the Dislocation Density Using a Line Profile. 

 

Using the theoretical curves in Figure 37, the dopant concentration listed in Table 

7, and the dislocation density calculated in Figure 38, the accuracy to within the same 

order of magnitude of the measured value of the effective minority carrier lifetime 

determined by TRPL was verified to within a 8.4 percent difference or a factor of 1.09.  

This difference can be explained by the fact that the dislocation density was just an 

approximate calculation and therefore maybe actually slightly less.  A smaller dislocation 

density would give a larger minority carrier lifetime based on the theoretical curves in 

Figure 37.  The results are listed in Table 8. 
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Material 
Effective 
Lifetime 

(TRPL) (ns) 

Approximate 
Effective 

Lifetime from 
Figure 34. (ns) 

Percent 
Variation 

(%) 

Factor 
Difference 

InGaP/Ge 13.1 12 8.4 1.09 

 
Table 8.   Comparison of Measured Effective Minority Carrier Using Lifetime Using TRPL 

and Theoretical Values Calculated Using Equation (16) [31]. 

 

Now that it is known that the radiative and non-radiative lifetimes are 

comparable, it is time to show that they both vary spatially.  Referring back to the graph 

in Figure 37, it can be seen that the effective minority carrier lifetime varies with respect 

to dislocation density.  Therefore, it can be surmised that either just the non-radiative 

lifetime decreases due to deeper impurity levels or that both the radiative and non-

radiative lifetimes vary.  If the non-radiative lifetime decreases due to defect states 

associated with the dislocations, as is known to be true, then the radiative lifetime will 

increase if the Fermi level moves toward the center of the gap and reduces the free hole 

population.  The mechanism for this increase in radiative lifetime is the fact that near the 

dislocations the majority charge carrier or hole concentration is slightly reduced, thus 

further decreasing the chances of a minority charge carrier recombination.  Equation (35) 

represents the relationship between the hole concentration and the radiative lifetime.  

With these ideas in mind and applied to Equations (15) and (31) we get the relationships 

r nr
diff

r nr

kTL D
e

τ τμ τ
τ τ

= =
+

        (36) 

and 

max 22 2 2
r nr r nr

r r nr r r nr

ggI τ τ τ τ
τ τ τ τ τ τ

≈ ≈
+ +

�        (37) 

with all variables as previously defined.  A model was constructed with simulated 

variations in nrτ  and rτ  to determine if this would reproduce the experimental results.  

Equations (35), (36), and (37) were used in the model with the non-radiative lifetime and 

the hole concentration being the variables.  The non-radiative lifetime and hole 
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concentration was decreased by a periodic cosine function to simulate the effects of the 

dislocation regions.  Therefore, both the non-radiative lifetime and hole concentration 

would decrease to a point and then begin to increase simulating a light band region.  

Figure 39 illustrates the modeled relationship between the free hole concentration and the 

radiative lifetime.  The simulation shows a significant decrease of approximately 50 

percent in the hole concentration.   
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Figure 39.   Modeled Results Showing the Relationship Between the Dopant 

Concentration and the Radiative Lifetime Across Two Simulated Dark Bands. 

 

The experimental and modeled results for one simulated dark and light band are listed in 

Table 11 in Appendix B and are illustrated with the experimental data over a length of 40 

microns across the horizontal line scan in Figures 40 and 41. 
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Figure 40.   Experimental and Modeled Results of the Maximum Luminescent Intensity 

across a 40 Micron Length of the Horizontal Line Scan. 
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Figure 41.   Experimental and Modeled Results of the Diffusion Length across a 40 

Micron Length of the Horizontal Line Scan. 

 

In addition, the simulated data resulted in a percent variation in diffusion length and 

intensity that was within the ranges comparable to that of the experimental data.  

Therefore, the simulated results show that it is possible for the diffusion length to 

increase in the dark bands, due to the increase in radiative lifetime, which causes an 

overall increase in effective lifetime. 

3. Final Observations 

Now that a working model has been created simulating the experimental results 

and validating Equations (35), (36), and (37), there is another interesting idea that is 

important to mention.  In addition to the qualitative behavior of the various lifetime 

mechanisms and the measurement of the diffusion length in the material, the quantum 

efficiency is also a very important and critical measurement in solar cell construction.  
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The quantum efficiency is a measure of the current that a solar cell will produce when 

illuminated by light at a particular wavelength.  In other words it is a percent measure of 

how many electron-hole pairs are created when a photon hits the surface of the material.  

Thus, the more electron-hole pairs that are produced, in turn allow more electrons to be 

available to move through the circuit and create more current, thus increasing quantum 

efficiency.  The quantum efficiency can be calculated if the effective lifetime and the 

radiative lifetime are known by using the equation 

eff

r

τ
η

τ
=           (38) 

where η  is the quantum efficiency and all other variables are as previously defined.  

Equation (38) shows that for the analysis conducted in this work on the 49 51In Ga P  

sample, as the radiative lifetime increases due to the effects of the dislocations on the free 

hole concentration then the quantum efficiency will decrease.  This is also due to the fact 

that the radiative minority carrier lifetime increases more than the effective lifetime at the 

dislocations.  Figure 42 shows the relationship from the simulation between the effective 

and radiative lifetimes.  Figure 43 then illustrates how they affect the behavior of the 

quantum efficiency.  As expected, the quantum efficiency decreases in the dislocations 

and since this behavior was successfully illustrated in the simulation, more credibility is 

given to the results of the simulated behaviors. 
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Figure 42.   Simulated Graph of the Radiative and Effective Minority Carrier Lifetimes. 
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Figure 43.   Simulated Graph of the Effects of Radiative and Effective Minority Carrier 
Lifetimes on the Quantum Efficiency. 
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V. CONCLUSION AND SUGGESTIONS FOR FURTHER 
RESEARCH 

A. CONCLUSION AND SUMMARY 

Using the technique developed to quantitatively and non-destructively extract the 

minority carrier diffusion lengths from spatially resolved luminescence, the variations in 

diffusion length and maximum luminescent intensity were able to be measure.  The 

values of the diffusion length were able to be measured to within 0.1 microns and 

differed between less than a percent to five percent across the dislocation bands.  Also, a 

model was successfully developed to simulate and explain the anti-correlating behavior 

discovered between the maximum luminescent intensity and the diffusion length across 

dislocation bands in a sample of 49 51In Ga P  material.  In addition, the simulation was also 

able to reproduce the light to dark band behavior seen in the maximum luminescent 

intensities and the diffusion lengths. 

Originally, it was assumed that in the low injection limit rτ >> nrτ  and 

constantrτ =  for this material.  When these assumptions were applied to the equations 

for intensity and diffusion length, the experimental data collected from the SEM did not 

match the theoretical relationships.  The effective minority charge carrier lifetime was 

known from TRPL and the radiative lifetime could be calculated, therefore the non-

radiative lifetime was also calculated revealing that the radiative and non-radiative 

lifetimes were comparable.  In addition, the non-radiative lifetime is known to decrease at 

dislocation sites due to deep level defects located there.  The increased concentration of 

defect sites cause the free hole concentration to decrease near the dislocation thereby 

increasing the radiative lifetime.  Using these new relationships established between the 

minority carrier lifetime mechanisms and the free hole concentration, the model was able 

to reproduce the experimental results showing an increase in effective lifetime in the 

regions of lower luminescence. 
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In conclusion, the model furthers understanding of the behavior of the radiative 

and non-radiative recombination mechanisms and how they affect the luminescent 

intensity and diffusion length within the dislocations.  The model also shows how 

dislocation areas affect the free hole concentrations and how that in turn affects the 

radiative lifetime.  Finally, and probably one of the most important aspects of a solar cell 

is that if the radiative lifetime increases more than the effective minority carrier lifetime 

then according to the quantum efficiency equation, the quantum efficiency or production 

of electron-hole pairs decrease at the dislocation site.  Therefore, the development of 

improved solar cell growth techniques needs to minimize the dislocations at the lattice 

interfaces thus increasing quantum efficiency and improving total current production. 

B. SUGGESTIONS FOR FURTHER RESEARCH 

1. Analysis of Crystallographic Directionality on Diffusion Length 
Variations and Minority Carrier Lifetime Behavior 

At the beginning of Chapter IV, the horizontal line scan was introduced and 

described as the SEM mode that was used to extract the maximum luminescent intensity 

and diffusion length across the dislocation bands in Figure 14.  However, it has been seen 

in the triple junction solar cell material, such as InGaAs, that there are two sets of 

dislocation bands that are perpendicular to one another.  The sample of 49 51In Ga P  used in 

this work has dislocation bands that are very distinct in one direction, however, the 

second set of perpendicular bands are not as visible in the SEM images.  The existence of 

these perpendicular bands can be identified by rotating the horizontal line scan 90 

degrees to create a vertical line scan.  Figure 44 shows a combined image of the picture 

mode of the general location on the sample and a vertical line scan image that was taken 

in order to extract the luminescent intensities and diffusion lengths along a horizontal line 

profile. 
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Figure 44.   Combined Image of the Picture Mode and the Vertical Line Scan Mode 

Showing the Location of the Line Scan Beam. 
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Figure 45.   Maximum Luminescent Intensity and Diffusion Length Results for a Vertical 

Line Scan Along a Dislocation Band. 

 

The graphical results, shown in Figure 45, are similar to the graphical results obtained 

from the horizontal line scan.  Since the behavior of the luminescent intensities and 

diffusion lengths are similar as previously determined, the technique and simulation 

developed in this thesis should be able to be applied in this instance as well.  Therefore, 

more analysis should be conducted to determine and compare the spatial variations of 

diffusion length due anisotropy and to expand this analysis to other triple junction solar 

cell material such as InGaAs.  The simulation should then be applied to these analyses to 

qualitatively determine if the behavior of the diffusion length and the various lifetimes 

are consistent in all cases. 
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2. Effects of Varying Solar Cell Material Properties on Diffusion Length 
and Minority Carrier Lifetime Behavior 

Figure 46 shows a SEM picture mode image of a sample of InGaAs  grown on a 

GaAs substrate.  The picture clearly illustrates the importance of lattice matching when 

growing a material on a particular substrate.  The lattice constants of these two materials 

vary by about four percent, which results in the distinct vertical and horizontal dislocation 

bands seen in the image.   

 
Figure 46.   A SEM Picture Mode Image of a Sample of InGaAs Grown on a GaAs 

Substrate (204 mμ  x 204 mμ ) and Showing the Horizontal and Vertical 
Dislocation Bands. 
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Figure 47 shows the variations in maximum luminescent intensity which appear to be 

between 10 – 20 percent, however, the variations in the diffusion length were 

approximately one to two percent higher than the variations in the diffusion lengths for 

49 51 /In Ga P Ge , which as described in Chapter II has a lattice constant difference of less 

than a tenth of a percent. 

 

 
Figure 47.   Results from a Vertical Line Scan on a Sample of InGaAs Showing the Same 

Anti-correlating Behavior Between the Diffusion Length and the Maximum 
Luminescent Intensity. 

 

Current research is investigating the possibility of making more efficient solar cells by 

growing non-lattice matched materials.  This is used to tune the band-gap in these 

materials.  However, even if the band-gap is tuned to get better recombination between 

electrons and holes, it still does not solve the problem of the dislocations affecting the 

free hole concentration and thus increasing the radiative lifetime thereby decreasing 

quantum efficiency.  More investigation should be conducted by comparing lattice 
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matched and non-lattice matched solar cell samples of varying mole concentrations, 

atomic ordering, and doping concentrations to determine their effects on the various 

minority charge carrier lifetime mechanisms and how that in turn affects the quantum 

efficiency and diffusion length, which are key parameters in constructing highly efficient 

solar cell material. 
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APPENDIX A. DATA TABLES FOR THE LINE SCAN RESULTS 

 

Probe Current (A)/Exposure 
Time (sec)/Scan Speed 

Light Band 
Intensity/ 

Corresponding 
Diffusion Length 

(μm ) 

Dark Band 
Intensity/ 

Corresponding 
Diffusion Length 

(μm ) 

Percent 
Variation of 
Max and Min 

Intensity 

Percent Variation 
of Corresponding 
Diffusion Length 

7202/3.85 6844/3.98 5.0 3.3 
7147/3.92 6958/4.14 2.6 5.3 1e-9/10/TV 
7005/4.02 6866/4.10 2.0 2.0 
8310/3.84 7972/3.99 4.1 3.8 
8327/3.87 8021/4.12 3.7 6.1 1e-9/10/Slow 1 
8260/4.02 8050/4.10 2.5 2.0 
8704/3.85 8337/4.01 4.2 4.0 
8781/3.92 8441/4.10 3.9 4.4 1e-9/8/Slow 2 
8668/4.01 8531/4.07 1.6 1.5 
9238/3.76 8868/3.90 4.0 3.6 
9271/3.81 8909/3.98 3.9 4.3 6e-10/20/TV 
9025/3.92 8885/3.99 1.6 1.8 
9537/3.58 9100/4.04 4.6 11.4 
9229/3.91 8589/4.15 6.9 5.8 6e-10/20/Slow 1 
9348/3.94 8919/4.07 4.6 3.2 
8981/3.60 8470/3.99 5.7 9.8 
8660/3.92 8248/4.13 4.8 5.1 6e-10/20/Slow 2 
8784/3.92 8527/4.03 2.9 2.7 
7242/3.59 6942/3.72 4.1 3.5 
7278/3.61 6985/3.84 4.0 6.0 3e-10/50/TV 
7192/3.69 6978/3.89 3.0 5.1 
8563/3.70 8205/3.89 4.2 4.9 
8355/3.75 8115/3.90 2.9 3.8 3e-10/50/Slow 1 
8524/3.57 8165/3.88 4.2 8.0 
8554/3.51 8035/3.90 6.1 10.0 
8202/3.84 7779/3.99 5.2 3.8 3e-10/45/Slow 2 
8474/3.79 8114/3.91 4.2 3.1 
6117/3.35 5910/3.49 3.4 4.0 
6099/3.23 5858/3.63 4.0 11.0 1e-10/180/TV 
5972/3.47 5725/3.74 4.1 7.2 
6577/3.35 6461/3.51 1.8 4.6 
6793/3.32 6499/3.57 4.3 7.0 1e-10/180/Slow 1 
6610/3.48 6451/3.59 2.4 3.1 
7751/3.43 7456/3.5 3.8 2.0 
7858/3.38 7505/3.63 4.5 6.9 1e-10/180/Slow 2 
7721/3.45 7549/3.65 2.2 5.5 

 

Table 9.   Maximum Luminescent Intensities in the Light and Dark Band and Their 
Corresponding Diffusion Lengths Over a 40 micron Portion of the Horizontal 

Line Scan (Position 2). 
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Probe Current (A)/Exposure 
Time (sec)/Scan Speed 

Light Band 
Intensity/ 

Corresponding 
Diffusion Length 

(μm ) 

Dark Band 
Intensity/ 

Corresponding 
Diffusion Length 

(μm ) 

Percent 
Variation of 
Max and Min 

Intensity 

Percent Variation 
of Corresponding 
Diffusion Length 

8056/3.53 7483/3.89 7.1 9.3 
7972/3.78 7798/3.87 2.2 2.3 1e-9/10/TV 
7955/3.67 7535/3.97 5.3 7.6 
9276/3.49 8614/3.90 7.1 10.5 
9233/3.81 9007/3.88 2.4 1.8 1e-9/10/Slow 1 
9196/3.63 8720/3.95 5.2 8.1 
9472/3.54 8997/3.92 5.0 9.7 
9543/3.79 9341/3.90 2.1 2.8 1e-9/8/Slow 2 
9528/3.65 9147/3.94 4.0 7.4 
9308/3.50 8623/3.85 7.4 9.1 
9224/3.73 8954/3.82 2.9 2.4 6e-10/20/TV 
9168/3.64 8759/3.92 4.5 7.1 
8831/3.50 8377/3.87 5.1 9.6 
8748/3.72 8405/3.80 3.9 2.1 6e-10/20/Slow 1 
8745/3.61 8259/3.87 5.6 6.7 
8931/3.50 8293/3.83 7.1 8.6 
8908/3.73 8579/3.81 3.7 2.1 6e-10/20/Slow 2 
8895/3.63 8442/3.87 5.1 6.2 
7006/3.40 6331/3.67 9.6 7.4 
6749/3.58 6571/3.66 2.6 2.2 3e-10/50/TV 
6691/3.49 6289/3.71 6.0 5.9 
8768/3.41 8033/3.69 8.4 7.6 
8514/3.58 8266/3.69 2.9 3.0 3e-10/50/Slow 1 
8540/3.53 7993/3.74 6.4 5.6 
9039/3.51 8217/3.70 9.1 5.1 
8804/3.56 8539/3.64 3.0 2.2 3e-10/45/Slow 2 
8828/3.55 8268/3.69 6.3 3.8 
5202/3.20 4771/3.50 8.3 8.6 
5080/3.24 4953/3.49 2.5 7.2 1e-10/180/TV 
5041/3.25 4794/3.56 4.9 8.7 
7335/3.63 6817/3.78 7.1 4.0 
7151/3.66 7047/3.76 1.5 2.7 1e-10/180/Slow 1 
7148/3.64 6694/3.82 6.4 4.7 
8623/3.68 8062/3.78 6.5 2.6 
8461/3.70 8281/3.77 2.1 1.9 1e-10/180/Slow 2 
8497/3.70 7899/3.81 7.0 2.9 
7433/3.58 6936/3.78 6.7 5.3 
7385/3.69 7201/3.76 2.5 1.9 6e-11/300/TV 
7316/3.66 6898/3.87 5.7 5.4 
7378/3.57 6815/3.79 7.6 5.8 
7230/3.63 7050/3.72 2.5 2.4 6e-11/300/Slow 1 
7190/3.63 6863/3.80 4.5 4.5 
7779/3.51 7114/3.70 8.5 5.1 
7465/3.58 7302/3.64 2.2 1.6 6e-11/280/Slow 2 
7454/3.57 7012/3.74 5.9 4.5 

 

Table 10.   Maximum Luminescent Intensities in the Light and Dark Band and Their 
Corresponding Diffusion Lengths Over a 40 micron Portion of the Horizontal 

Line Scan (Position 3). 
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APPENDIX B. DATA TABLE FOR THE SIMULATED RESULTS 

 

Free Hole 
Concetration 

(cm-3) 

Radiative 
Lifetime (ns) 

Non-radiative 
Lifetime (ns) 

Diffusion 
Length 

Sim 
(microns) 

Diffusion 
Length 

Exp. 
(microns) 

Intensity 
Sim. 
(Arb 

Units) 

Intensity 
Exp. 
(Arb 

Units) 

1.10e17 37.7 20.1 3.93 3.56 5559 8427 
1.10e17 37.8 20.1 3.93 3.50 5550 8305 
1.08e17 38.4 20.0 3.94 3.59 5489 8267 
1.05e17 39.4 19.9 3.95 3.59 5377 8090 
1.02e17 40.9 19.8 3.97 3.65 5220 7970 
9.67e16 42.9 19.6 3.99 3.68 5021 7757 
9.13e16 45.5 19.4 4.01 3.79 4789 7612 
8.54e16 48.6 19.2 4.03 3.70 4533 7392 
7.94e16 52.3 19.0 4.05 3.84 4263 7154 
7.35e16 56.4 18.8 4.08 3.77 3993 6984 
6.81e16 60.9 18.6 4.10 3.81 3737 6784 
6.33e16 65.5 18.4 4.12 3.89 3508 6644 
5.95e16 69.7 18.3 4.13 3.93 3320 6601 
5.68e16 73.1 18.2 4.14 3.92 3184 6436 
5.53e16 75.1 18.1 4.15 3.94 3109 6462 
5.51e16 75.3 18.1 4.15 3.90 3099 6643 
5.62e16 73.8 18.1 4.14 3.90 3155 6780 
5.86e16 70.8 18.2 4.14 3.96 3273 6870 
6.21e16 66.8 18.3 4.12 3.91 3447 7084 
6.66e16 62.3 18.5 4.10 4.03 3665 7974 
7.18e16 57.8 18.7 4.08 3.88 3914 7346 
7.76e16 53.5 18.9 4.06 3.82 4182 7509 
8.36e16 49.6 19.1 4.04 3.82 4453 7594 
8.96e16 46.3 19.4 4.01 3.79 4714 7676 
9.52e16 43.6 19.6 3.99 3.79 4955 7725 
1.00e17 41.4 19.7 3.97 3.82 5164 7678 
1.04e17 39.8 19.9 3.96 3.78 5335 7757 
1.07e17 38.6 20.0 3.94 3.78 5460 7800 
1.09e17 37.9 20.1 3.94 3.81 5537 7792 
1.10e17 37.7 20.1 3.93 3.83 5562 7592 
1.09e17 38.0 20.1 3.94 3.84 5535 7499 
1.07e17 38.7 20.0 3.94 3.83 5456 7455 
1.04e17 39.8 19.9 3.96 3.90 5329 7379 
1.00e17 41.5 19.7 3.97 3.95 5157 7314 
9.50e16 43.7 19.6 3.99 4.01 4946 7193 
8.93e16 46.4 19.3 4.01 3.98 4705 7080 
8.34e16 49.8 19.1 4.04 4.08 4442 6975 
7.74e16 53.6 18.9 4.06 4.06 4171 6947 
7.16e16 57.9 18.7 4.08 4.13 3904 6973 
6.64e16 62.5 18.5 4.10 4.17 3656 6906 
6.19e16 67.0 18.3 4.12 4.01 3439 6965 
5.85e16 71.0 18.2 4.14 4.15 3268 6948 
5.61e16 73.9 18.1 4.14 4.16 3151 7074 
5.51e16 75.4 18.1 4.15 4.02 3098 7246 
5.53e16 75.0 18.1 4.15 3.89 3110 7324 

 

Table 11.   The Experimental and Simulated results for One Dark and Light Band. 
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APPENDIX C. HORIZONTAL LINE SCAN MAXIMUM 
LUMINSCENT INTENSITY AND DIFFUSION LENGTH 

EXTRACTION MATLAB CODE (WRITE_HORIZONTAL.M AND 
READDATA_HORIZONTAL_UPDATED.M) 

%WRITEDATA_HORIZONTAL.M 
clear all 
clc 
rin=4; 
rout=12; 
I = imread('HorizLineScan3_6e-11_Slow2.tif'); 
I = double(I); 
yx = size(I); 
xx=linspace(1,yx(2),yx(2)); 
yy=linspace(1,yx(1),yx(1)); 
[X Y]=meshgrid(xx,yy); 
contour(X,Y,I) 
axis equal 
axis ([0 max(yx) 0 max(yx)]) 
y = [1 842]; 
s = 375; 
t = 725; 
for n = s:t   %750 is the max 
        x = [n n]; 
        [Cx Cy C] = improfile(I,x,y); 
        A = [Cy C]; 
        [IntMax PosMax] = max(A); 
[IntMax] = min(IntMax); 
[Poscenter] = min(PosMax); 
yyy = Cy(1:841);   %This is using the actual pixel values from 
improfile 
%                    command 
ymicron = .4*(yyy-Poscenter); 
ylinenorm = (C-mean(C(2:30)))/(IntMax-mean(C(2:30))); 
yx = size(I); 
mm=1; 
for m=1:yyy(840) 
    if ymicron(m) >= rin & ymicron(m) <=rout 
        % Pulls the y_position in microns 
        ypos(mm) = ymicron(m); 
        % Pulls the Normalized Intensity 
        Inormpos(mm) = ylinenorm(m); 
        % Increments the counter 
        mm=mm+1; 
    end 
end 
% Takes natural log of Normalized Intensity 
Ilnnormpos=log(Inormpos); 
% Plots ln of Normalized Intensity vs. position 
% Linear regression of plot, displays Diffusion Length, plots 
regression 
[P,S] = polyfit(ypos,Ilnnormpos,1); 
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m=P(1); 
Ldiff_0_pos=1/abs(m); 
b=P(2); 
f = @(y)m*y+b; 
fplot(f,[rin rout]); 
mm=1; 
for m=1:yyy(840) 
    if ymicron(m) <= -rin & ymicron(m) >= -rout 
        % Pulls the y_position in microns 
        yneg(mm) = ymicron(m); 
        % Pulls the Normalized Intensity 
        Inormneg(mm) = ylinenorm(m); 
        % Increments the counter 
        mm=mm+1;         
    end 
end 
% Takes natural log of Normalized Intensity 
Ilnnormneg=log(Inormneg); 
% Plots ln of Normalized Intensity vs. position 
% Linear regression of plot, displays Diffusion Length, plots 
regression 
[P,S] = polyfit(yneg,Ilnnormneg,1); 
m=P(1); 
Ldiff_0_neg=1/abs(m); 
b=P(2); 
f = @(y)m*y+b; 
fplot(f,[-rin -rout]); 
        M = [Cy C]; 
        R = [ymicron,ylinenorm];  %This is using the actual pixel 
values 
%                                    from improfile command 
        picpos = n-t+400; 
        picpos = picpos'; 
        N = [picpos, max(C)]; 
        Q = [Ldiff_0_pos Ldiff_0_neg]; 
        D = {M R N Q}; 
        [h w] = size(M); 
        a(1:h, 1:w, n) = M; 
        sw = w+1; 
        [hR wR] = size(R); 
        a(1:hR, sw:sw+1, n) = R; 
        sw = sw+w; 
        [hN wN] = size(N); 
        a(1:hN, sw:sw+1, n) = N; 
        sw = sw+2; 
        [hQ wQ] = size(Q); 
        a(1:hQ, sw:sw+1, n) = Q; 
        test = a(:,:, n); 
        z = n; 
        Data = 'Data'; 
        zz = num2str(z); 
        filename = strcat(Data,zz); 
        xlswrite(filename,test,'sheet1','A1'); 
end 
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%READDATA_HORIZONTAL_UPDATED.M 
clear all 
clc 
startx = 0; 
stopx = 441; 
starty = 4000; 
stopy = 8000; 
CC = (0:440); 
DD = (0:440); 
EE = (0:440); 
FF = (0:440); 
GG = [CC;DD;EE;FF]; 
[h w] = size(GG); 
figure(5) 
axis([0 1000 0 842]); 
test = zeros(351, 3); 
test(:,1) = 1:351; 
for i = 375:725 
    z = i; 
    Data = 'Data'; 
    zz = num2str(z); 
    filename = strcat(Data,zz); 
    A = xlsread(filename,'sheet1'); 
    B = A; 
    C = B(1,5:8); 
    X = 1:1:i-374+1; 
    lx = i-374; 
    test(lx, 2) = C(2); 
    test(lx, 3) = C(3); 
    test(lx, 4) = C(4); 
    [s e w] = size(test); 
    a(1:s, 1:e, 1:w, i) = test; 
    test2 = a(:,:,:, i); 
    z = 726; 
    Data = 'Data'; 
    zz = num2str(z); 
    filename = strcat(Data,zz); 
    xlswrite(filename,test2,'sheet1','A1'); 
end 
    h1 = plot(test(:,1),test(:,2),'.','MarkerEdgeColor','k',... 
        'MarkerFaceColor','g','Markersize',14);hold on; 
    ax1 = gca; 
    set(ax1,'XColor','k','YColor','k'); 
    ax2 = axes('Position',get(ax1,'Position'),'XAxisLocation','top',... 
        'YAxisLocation','right','Color','none','XColor','k',... 
        'YColor','k');hold on; 
%     h2 = plot(test(:,1),test(:,3),'.','MarkerEdgeColor','b',... 
%         'MarkerFaceColor','b','Markersize',14,'parent',ax2); 
    h3 = plot(test(:,1),test(:,4),'.','MarkerEdgeColor','r',... 
        'MarkerFaceColor','r','Markersize',14,'parent',ax2);hold on; 
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    set(get(ax1,'Xlabel'),'String','Point 
Position','Color','k','FontSize',14); 
    set(get(ax1,'Ylabel'),'String','Intensity (Arb 
Units)','Color','k','FontSize',14); 
    set(get(ax2, 'Ylabel'),'String','Ldiff','Color','k','FontSize',14); 
    title('Data for Position 1 Line Scan 2 Slow Speed 
2','FontSize',16); 
    h4 = legend(ax1,'location','E'); 
    set(h4,'Color','w','string','Intensity'); 
    h5 = legend(ax2); 
    h6 = legend(h5,'Ldiff Negative','location','SE'); 
    set(h6,'Color','w'); 
    grid on; 
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